近日,国际化学领域期刊《材料化学学报》A刊报道了西南交通大学孟涛教授团队的研究成果——利用具有中空连续通道的仿蜘蛛丝微纤维进行高效集水,团队通过在仿蛛丝微纤维内部构建中空结构,让纤维的集水性得到显著提升,研究发现,该仿生微纤维悬挂液滴体积是纺锤节体积的1663倍,集水能力数值远超出已有文献报道的数值。
雨后的清晨或者潮湿的角落,人们常常可以发现蜘蛛网上悬挂着大量晶莹的液滴。研究发现,实际上,蜘蛛丝有强大的集水功能,而其集水能力归因于一种独特的纤维结构,该结构由周期性纺锤节和关节构成,其中纺锤节由随机杂乱的纳米纤维组成,关节则由排列整齐的纳米纤维组成。当从干燥条件转化为潮湿条件下时,蜘蛛丝的结构会产生变化出现纺锤节(可以储水)。当微小的水滴在蜘蛛丝上凝结后,将在驱动力作用下向纺锤节方向运动,实现集水。
受天然蜘蛛丝启发,研究者们计划制备模仿蜘蛛丝结构的微纤维,从大气中收集淡水。但近年来的研究集中在通过调控纤维表面形貌来提升毛细作用力,这种方式对于纤维集水性能提升有限。因此,目前提高微纤维的集水能力仍然是一个持续的挑战。基于此,西南交通大学孟涛教授团队从内部结构出发,探究纤维集水性能的改善方法。在研究过程中,团队尝试了油水体系和气液体系的微流控等技术,开展了大量实验,均未达到理想效果。
最终,研究团队从细胞内外水相分区的结构中得到启发,使用基于双水相层流的微流控纺丝技术,利用了双水相分区效应的机理,在界面上快速交联形成了纤维,并阻止了后续物质的扩散和继续反应,形成了仿蛛丝中空微纤维。孟涛表示:“我们将仿蛛丝中空微纤维与仿蛛丝实心微纤维在相同条件下进行对比集水实验,证明了中空结构增强了纤维的集水性能,仿蛛丝中空微纤维的集水能力更好更优秀。
为何相比于实心纺锤节微纤维,仿蛛丝中空微纤维能展现出更加优异的液滴悬挂能力呢?“由于中空通道的存在,延长了液滴与纤维间的三相接触线长度,增强了液滴受到的毛细作用力,从而提高了纤维悬挂液滴的能力。”孟涛解释说,液滴悬挂在中空微纤维时,中空通道内的液柱形成毛细桥,液柱两端半月板状凹陷为悬挂的液滴提供了额外的毛细作用力,这种作用力对于提升悬挂液滴的能力有着重要的贡献。
毛细作用是指液体表面对固体表面的吸引力。液体表面类似张紧的橡皮膜,若液面是弯曲的,它就有变平的趋势。“浸润液体在毛细管中的液面是凹形的,它对下面的液体施加拉力,使液体沿着管壁上升,当向上的拉力跟管内液柱所受的重力相等时,管内的液体停止上升,达到平衡。”孟涛举例说,在自然界和日常生活中有许多毛细现象的例子,如植物茎内的导管就是植物体内极细的毛细管,它能把土壤里的水分吸上来。另外,砖块吸水、毛巾吸汗、粉笔吸墨水都是常见的毛细现象,这些物体中有许多细小的孔道,都起着毛细管的作用。
因此,借助毛细作用力,能增加仿蛛丝中空微纤维悬挂液滴的能力,悬挂的液滴体积越大,单位时间内从空气中捕获的水分就越多,从而提升了微纤维从空气中采集水分的效率。